18 Oct

Progress in Digital Industrial Radiology. Part I: Radiographic Techniques – Film Replacement and Backscatter Imaging

Uwe Ewert

Similar to the success story of digital photography a major upheaval has been observed in digital industrial radiology. This paper is split into 3 parts:
Part 1: Film Replacement and Backscatter Imaging: Computed radiography with phosphor imaging plates substitutes film applications. Digital Detector Arrays enable an extraordinary increase of contrast sensitivity in comparison to film radiography. The increased sensitivity of digital detectors enables the efficient usage for dimensional measurements and functionality tests substituting manual maintenance. The digital measurement of wall thickness and corrosion status is state of the art in petrochemical industry. Photon counting and energy discriminating detectors are applied up to 300 kV and provide increased thickness dynamic and material discrimination by synchronously acquisition of images of the high and low energy part of the spectrum. X-ray back scatter techniques have been applied in safety and security relevant applications with single sided access of source and detector. First inspections of CFRP in aerospace industry were successfully conducted with newly designed back scatter cameras. Numeric modeling is used to design X-Ray optics and inspection scenarios as well as conducting RT training.
Part 2: Computed tomography (CT)
Part 3: Micro Radiography and Micro CT.

Uwe Ewert, Progress in Digital Industrial Radiology. Part I: Radiographic Techniques – Film Replacement and Backscatter Imaging

hello